DOI: 10.1093/ptep/ptae021 ISSN: 2050-3911

Enhanced classical radiation damping of electronic cyclotron motion in the vicinity of the Van Hove singularity in a waveguide

Yuki Goto, Savannah Garmon, Tomio Petrosky
  • General Physics and Astronomy

Abstract

We study the damping process of electron cyclotron motion and the resulting emission in a waveguide using the classical Friedrichs model without relying on perturbation analysis such as Fermi’s golden rule. A Van Hove singularity appears at the lower bound (or cut-off frequency) of the dispersion associated with each of the electromagnetic field modes in the waveguide. In the vicinity of the Van Hove singularity, we found that not only is the decay process associated with the resonance pole enhanced (amplification factor ∼104) but the branch-point effect is also comparably enhanced. As a result, the timescale on which most of the decay occurs is dramatically shortened. Further, this suggests that the non-Markovian branch point effect should be experimentally observable in the vicinity of the Van Hove singularity. Our treatment yields a physically-acceptable solution without the problematic runaway solution that is well known to appear in the traditional treatment of classical radiation damping based on the Abraham-Lorentz equation.

More from our Archive