Kunpeng Xie, Qianzhi Zeng, Sihui Yu, Hongjing Luo, Yongsheng Zhang, Changwei Ma, Haoyu Hu, Shengnan Shi, Zheng Gong

Contrasting Distribution of Microbial Communities, Functional Genes, and Antibiotic Resistance Genes in Produced Water Treatment Plants with Different Treatment Technologies

  • Water Science and Technology
  • Aquatic Science
  • Geography, Planning and Development
  • Biochemistry

A massive volume of produced water (PW) generated in the process of oil extraction must be treated effectively due to its threat to the ecosystems and human health. Different biological treatment technologies have been used in wastewater treatment plant (WWTP) systems to treat PW. However, their influence on treatment performance has not been investigated. In this study, three PW treatment plants (PWTPs) with different treatment technologies were compared in the following aspects: microbial community structure and assembly, functional genes, and the spread of antibiotic resistance genes (ARGs). The results indicated that different biological treatment technologies led to the variations in the diversity and composition of the microbial community. Phylogenetic bin-based null model analysis (iCAMP) revealed that different treatment technologies deterministically drove the assembly of microbial communities, especially the genera associated with the removal of petroleum hydrocarbons. The results of the metagenomic analysis showed that the genes related to the degradation of alkanes and aromatic hydrocarbons were the most abundant in PWTP3, suggesting it had the highest petroleum degradation potential. In addition, the highest abundance of ARGs in PWTP1 indicated the potential facilitation of ARG dissemination in activated sludge systems. Network analysis indicated that the dissemination of ARGs in the PWTPs might be mediated by transposases.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive