Yangwoo Lee, Ju-Hee So, Hyung-Jun Koo

A Transparent Hydrogel-Ionic Conductor with High Water Retention and Self-Healing Ability

  • General Materials Science

This study presents a transparent and ion-conductive hydrogel with suppressed water loss. The hydrogel comprises agarose polymer doped with sucrose and sodium chloride salt (NaCl–Suc/A hydrogel). Sucrose increases the water retention of the agarose gel, and the Na and Cl ions dissolved in the gel provide ionic conductivity. The NaCl–Suc/A gel shows high retention capability and maintains a 45% water uptake after 4 h of drying at 60 °C without encapsulation at the optimum gel composition. The doped NaCl–Suc/A hydrogel demonstrates improved mechanical properties and ionic conductivity of 1.6 × 10−2 (S/cm) compared to the pristine agarose hydrogel. The self-healing property of the gel restores the electrical continuity when reassembled after cutting. Finally, to demonstrate a potential application of the ion-conductive hydrogel, a transparent and flexible pressure sensor is fabricated using the NaCl–Suc/A hydrogel, and its performance is demonstrated. The results of this study could contribute to solving problems with hydrogel-based devices such as rapid dehydration and poor mechanical properties.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive