Derek E Moulton, Hadrien Oliveri

The mathematics and mechanics of tug of war

  • Mechanics of Materials
  • General Materials Science
  • General Mathematics

In this paper, we propose a mechanical model for a game of tug of war (rope pulling). We focus on a game opposing two players, modelling each player’s body as a structure composed of straight rods that can be actuated in three different ways to generate a pulling force. We first examine the static problem of two opponents being in a deadlock configuration of mechanical equilibrium; here we show that this situation is essentially governed by the ratio of masses of the players, with the heavier player having a strong advantage. We then turn to the dynamic problem and model the response of the system to an abrupt change in activation by one of the players. In this case, the system exhibits a nontrivial response; in particular, we compare a sudden pulling and a sudden “letting up,” and demonstrate the existence of regimes in which the lighter player can momentarily take the advantage.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive