Xin Li, Ruizhe Zhao, Hao Tong, Xiangshui Miao

A nanoribbon device for analog phase change memory targeting neural network applications

  • Physics and Astronomy (miscellaneous)

Phase change memory (PCM) is one of the most mature technologies for non-von Neumann computing. However, abrupt amorphization becomes a barrier for training artificial neural networks, due to limitations of the inherent operational mechanism of phase change materials. The devices can achieve a gradual conductance change in the crystallization process, while the conductance change for amorphization process is much more abrupt. This work presents a possible explanation for the RESET abrupt change issue in T-shaped devices, based on the analysis of the volume and connectivity of the amorphous and crystalline regions. Using this model, a nanoribbon device for analog PCM targeting neural network applications is designed, fabricated, and characterized. The designed device can realize a gradual RESET without changing the amplitude and width of RESET pulses. Using a nanoribbon device as a single synapse in the designed array reduces the number of SET operations needed to achieve the same accuracy in convolutional neural network simulation by 75%, which implies a significant reduction in power and time consumption. This work provides an effective way to implement gradual RESET for PCM devices.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive