DOI: 10.1111/head.14654 ISSN: 0017-8748

Reduction in retinal microvascular perfusion during migraine attacks

Katherine Podraza, Nitin Bangera, Akira Feliz, Andrew Charles
  • Neurology (clinical)
  • Neurology



To determine if there are changes in structure and function of the retinal vasculature during and between migraine attacks using optical coherence tomography angiography (OCTA).


Migraine attacks commonly include visual symptoms, but the potential role of the retina in these symptoms is not well understood. OCTA is a rapid, non‐invasive imaging technique that is used to visualize the retinal microvasculature with high spatial resolution in a clinical setting. In this study we used OCTA to quantify different features of the retinal vasculature in patients with migraine during and between attacks, as well as in healthy controls (HCs).


We performed a prospective cohort study of 37 patients with migraine with aura (MA) (median [interquartile range, IQR] age of 37 [14] years, 86% female) and 30 with migraine without aura (MO) (median [IQR] age of 37 [17] years, 77% female) and 20 HCs (median [IQR] age of 35 [7] years, 50% female). Macular OCTA scans were obtained for all participants for the interictal analysis. In 12 MA and eight MO, scans were captured both during and outside of migraine attacks and five HCs had initial and repeat scans. In addition to analyzing the morphology of the foveal avascular zone, we calculated the vessel flux index (VFI), which is an indicator of retinal perfusion and conventional metrics (such as vessel area density) in the foveal and parafoveal regions.


There was a significant difference in the parafoveal VFI in the ictal state between the groups (p = 0.009). During migraine attacks there was a significant reduction in the parafoveal region VFI in MA (−7%, 95% confidence interval [CI] −10% to −4%; p = 0.006) and MO (−7%, 95% CI −10% to −3%; p = 0.016) from their interictal baseline as compared to the change between repeat scans in HCs (2%, 95% CI −3% to 7%). Interictally, there was a mean (standard deviation [SD]) 13% (10%) (p = 0.003) lower blood perfusion in the MA group as compared to the MO group in the foveal region (mean [SD] 0.093 [0.023] vs. 0.107 [0.021], p = 0.003). Interictal analysis also revealed higher circularity in the superficial foveal avascular zone in the MA group compared with the MO group (mean [SD] 0.686 [0.088] vs. 0.629 [0.120], p = 0.004). In addition, interictal analysis of the patients with MA or MO and unilateral headache showed increased retinal vascular parameters consistent with greater perfusion in the eye ipsilateral to the side of the pain as compared with the contralateral eye.


These results indicate that perfusion is reduced in MA and MO in the parafoveal retina during the ictal period. Interictally, the foveal retina in MA has reduced perfusion when compared to the foveal retina in MO. Patients with unilateral headache showed interictal asymmetry of retinal perfusion between eyes. These results indicate that changes in retinal perfusion could be a part of migraine pathophysiology, and that distinct retinal vascular signatures identified with OCTA could represent biomarkers for migraine.

More from our Archive