Fernando P. Santos

Prosocial dynamics in multiagent systems

  • Artificial Intelligence

AbstractMeeting today's major scientific and societal challenges requires understanding dynamics of prosociality in complex adaptive systems. Artificial intelligence (AI) is intimately connected with these challenges, both as an application domain and as a source of new computational techniques: On the one hand, AI suggests new algorithmic recommendations and interaction paradigms, offering novel possibilities to engineer cooperation and alleviate conflict in multiagent (hybrid) systems; on the other hand, new learning algorithms provide improved techniques to simulate sophisticated agents and increasingly realistic environments. In various settings, prosocial actions are socially desirable yet individually costly, thereby introducing a social dilemma of cooperation. How can AI enable cooperation in such domains? How to understand long‐term dynamics in adaptive populations subject to such cooperation dilemmas? How to design cooperation incentives in multiagent learning systems? These are questions that I have been exploring and that I discussed during the New Faculty Highlights program at AAAI 2023. This paper summarizes and extends that talk.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive