Xiaoru Zhao, Rennong Yang, Liangsheng Zhong, Zhiwei Hou

Multi-UAV Path Planning and Following Based on Multi-Agent Reinforcement Learning

  • Artificial Intelligence
  • Computer Science Applications
  • Aerospace Engineering
  • Information Systems
  • Control and Systems Engineering

Dedicated to meeting the growing demand for multi-agent collaboration in complex scenarios, this paper introduces a parameter-sharing off-policy multi-agent path planning and the following approach. Current multi-agent path planning predominantly relies on grid-based maps, whereas our proposed approach utilizes laser scan data as input, providing a closer simulation of real-world applications. In this approach, the unmanned aerial vehicle (UAV) uses the soft actor–critic (SAC) algorithm as a planner and trains its policy to converge. This policy enables end-to-end processing of laser scan data, guiding the UAV to avoid obstacles and reach the goal. At the same time, the planner incorporates paths generated by a sampling-based method as following points. The following points are continuously updated as the UAV progresses. Multi-UAV path planning tasks are facilitated, and policy convergence is accelerated through sharing experiences among agents. To address the challenge of UAVs that are initially stationary and overly cautious near the goal, a reward function is designed to encourage UAV movement. Additionally, a multi-UAV simulation environment is established to simulate real-world UAV scenarios to support training and validation of the proposed approach. The simulation results highlight the effectiveness of the presented approach in both the training process and task performance. The presented algorithm achieves an 80% success rate to guarantee that three UAVs reach the goal points.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive