Insights into the mechanism of mycelium transformation of streptomyces toxytricini into pellet
Punit Kumar, Khushboo Yadav, Deepanshi Rajput, Kashyap Kumar Dubey- General Earth and Planetary Sciences
- General Engineering
- General Environmental Science
Abstract
Formation of the mycelial pellet in submerged cultivation of Streptomycetes is unwanted in industrial fermentation processes as it imposes mass transfer limitations, changes in the rheology of a medium, and affects the production of secondary metabolites. Though detailed information is not available about the factors involved in regulating mycelial morphology, it is studied that culture conditions and genetic information of strain play a crucial role. Moreover, the proteomic study has revealed the involvement of low molecular weight proteins such as; DivIVA, FilP, ParA, Scy, and SsgA proteins in apical growth and branching of hyphae which results in the establishment of the mycelial network. The present study proposes the mechanism of pellet formation of Streptomyces toxytricini (NRRL B-5426) with the help of microscopic and proteomic analysis. The microscopic analysis revealed that growing hyphae contain a bud-like structure behind the apical tip, which follows a certain organized path of growth and branching, which was further converted into the pellet when shake flask to the shake flask inoculation was performed. Proteomic analysis revealed the production of low molecular weight proteins ranging between 20-95 kDa, which are involved in apical growth and hyphae branching, and can possibly participate in the regulation of pellet morphology.