DOI: 10.3390/fire6120456 ISSN: 2571-6255

Enhanced Electrochemical and Safety Performance of Electrocatalytic Synthesis of NH3 with Walnut Shell-Derived Carbon by Introducing Sulfur

Jin Wang, Zhichao Zheng, Bin Liu, Ziwei Wang, Shuang Wang
  • Earth and Planetary Sciences (miscellaneous)
  • Safety Research
  • Environmental Science (miscellaneous)
  • Safety, Risk, Reliability and Quality
  • Building and Construction
  • Forestry

An efficient catalyst is key to achieving the synthesis of electrochemical ammonia and improving safety. In this work, using biomass walnut shell as a carbon source and sodium thiosulfate as a sulfur source, sulfur-modified walnut shell-derived carbon material was synthesized via a simple low-temperature impregnation method at room temperature and atmospheric pressure as an effective electrochemical ammonia synthesis catalyst with high thermal stability. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption–desorption apparatus, thermogravimetry (TG), and other characterization methods were applied to analyze the micro-morphology and physicochemical structure of the electrocatalyst. The synthesized ammonia performance of the catalyst was measured using an ultraviolet (UV) spectrophotometer and electrochemical workstation. The catalyst design used the doping of sulfur atoms to create rich catalytic active sites, while the presence of elemental sulfur on the catalyst surface provided hydrophobicity, which was conducive to inhibiting competitive hydrogen evolution reaction (HER) and enhancing the electrocatalytic ammonia synthesis performance of the catalyst. Under normal temperature and pressure conditions, when a voltage of −0.45 V was applied, the ammonia yield in 0.05 M H2SO4 electrolyte was 10.39 μgNH3 mgcat.−1 h−1. The results showed that the introduction of sulfur effectively improved the electrocatalytic and thermal safety performance of bio-derived carbon materials, and the test presented that the performance of the catalyst was stable and reusable.

More from our Archive