L. Pirashanthiyah, H. N. Edirisinghe, W. M. P. De Silva, S. R. A. Bolonne, V. Logeeshan, C. Wanigasekara

Design and Analysis of a Three-Phase Interleaved DC-DC Boost Converter with an Energy Storage System for a PV System

  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Engineering (miscellaneous)
  • Building and Construction

This paper describes a groundbreaking design of a three-phase interleaved boost converter for PV systems, leveraging parallel-connected conventional boost converters to reduce input current and output voltage ripple while improving the dynamic performance. A distinctive feature of this study is the direct connection of a Li-Ion battery to the DC link, which eliminates the need for an additional charging circuit, which is a departure from conventional approaches. Furthermore, the combination of an MPPT controller and a closed-loop fuzzy controller with a current control mode ensures accurate switching signal generation for all three phases. The meticulously tuned system exhibits a remarkably low ripple content in the output voltage, surpassing calculated values, and demonstrates a superior dynamic performance. The investigation extends to a comprehensive analysis of losses, encompassing inductor copper loss and semiconductor conduction loss. In all scenarios, the converter exhibits an efficiency exceeding 93%, highlighting its robust performance as an effective solution for PV systems.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive