Gintaras Valeika, Jonas Matijošius, Olga Orynycz, Alfredas Rimkus, Artūras Kilikevičius, Karol Tucki

Compression Ignition Internal Combustion Engine’s Energy Parameter Research Using Variable (HVO) Biodiesel and Biobutanol Fuel Blends

  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Engineering (miscellaneous)
  • Building and Construction

This study investigates the impact of different biofuels, such as pure hydrogenated vegetable oil, hydrogenated vegetable oil, and biobutanol, as well as their blends, on the non-energetic operational characteristics of a compression ignition internal combustion engine. The research investigations were conducted using a turbocharged direct injection compression ignition engine that was put within a Skoda Octavia 1.9 TDI automobile. Throughout the investigation, the primary emphasis was placed on analyzing energy characteristics such as power, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), and other related factors. The analysis involved the utilization of multiple combinations of bio-based fuels, namely four mixes of HVO with biobutanol (HVO100, HVOB5, HVOB10, and HVOB20), which were subsequently compared to fossil diesel (D100). The findings of the study indicate that the utilization of HVO100 fuel results in notable reductions in power output and mass fraction when compared to D100 gasoline. HVO100 fuel demonstrates superior performance to D100 gasoline, exhibiting a range of 1.7% to 28% improvement in brake-specific fuel consumption. Additionally, at an engine speed of 4500 rpm, the use of HVO100 fuel leads to a decrease in brake thermal efficiency of 4.4%.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive