An innovative nano-porous copper composite without using a pore-forming agent
Hossam M Yehia, Omayma A Elkady, Abdel-Hady A El-Geassy, Tamer Abd-elmotaleb, Mohamed Bahlol, Abdullah Kamal- Industrial and Manufacturing Engineering
- Mechanical Engineering
In this research, a new nano-open porous copper without using a pore-forming agent was innovated. Five copper samples which are pure copper, Cu/2.5%Al2O3, Cu/2.5(Al2O3-GNs)Ag, Cu/5(Al2O3-GNs)2.5Ag, and Cu/7.5(Al2O3-GNs)2.5Ag were prepared using the electroless coating process. The samples were characterized by studying their chemical composition, microstructure, total pore area, bulk density, apparent density, and porosity percent. Also, the hardness and corrosion rate were studied. The SEM emphasized the formation of open pores with homogeneous distribution. Agglomeration of the new hybrid (Al2O3/GNs) was observed at 7.5%. The porosity percent and total pore area were increased gradually by adding 2.5%Al2O3 and different ratios of the new hybrid. The 7.5% (Al2O3-GNs) sample recorded the highest porosity percentage 32.86%. The sample 7.5% (Al2O3-GNs) exhibits the highest incremental pore volume in the micro-pore regions. The 5% (Al2O3-GNs) sample recorded the highest cumulative pore volume in the nanopore diameter region. The hybrid reinforcement (Al2O3/GNs) achieved hardness better than the single reinforcement (Al2O3). The hardness decreased gradually due to increasing the porosity percent and forming some agglomerations of the (Al2O3/GNs)Ag at 7.5%. The Cu/2.5(Al2O3/GNs)Ag sample recorded the lowest corrosion rate of 3.31 mm/year.