An Experimental Study on Bushing Formation during Friction Drilling of Titanium Grade 2 for Medical Applications
Hans Vanhove, Ecem Ozden, Joost R. Duflou- Industrial and Manufacturing Engineering
- Mechanical Engineering
- Mechanics of Materials
Recent advances towards patient specific titanium sheet based medical implants introduce a new challenge for the fixation of these implants to bones. Mainly, the use of locking screws requires an implant thickness of approximately 2 mm for screw thread formation. Friction drilling is a hole-making process that displaces material to create a bushing below the sheet rather than extracting material. This experimental study explores the influence of axial force, rotational speed, and workpiece pre-heating temperature on the bushing height and thickness during friction drilling of titanium grade 2 sheets. The drilling parameters are optimized for both drilling at room temperature and at elevated temperatures for maximum bushing thickness with at least a bushing height of 1 mm. Subsequently, the samples are characterized for their microstructure and hardness, revealing preserved strength with a larger thermomechanical affected zone (TMAZ), a more gradual hardness gradient around the drill zone, and a significant reduction in microdefects in the bushing structure of the pre-heated sheets.