Reenu Mohandas, Mark Southern, Eoin O’Connell, Martin Hayes

A Survey of Incremental Deep Learning for Defect Detection in Manufacturing

  • Artificial Intelligence
  • Computer Science Applications
  • Information Systems
  • Management Information Systems

Deep learning based visual cognition has greatly improved the accuracy of defect detection, reducing processing times and increasing product throughput across a variety of manufacturing use cases. There is however a continuing need for rigorous procedures to dynamically update model-based detection methods that use sequential streaming during the training phase. This paper reviews how new process, training or validation information is rigorously incorporated in real time when detection exceptions arise during inspection. In particular, consideration is given to how new tasks, classes or decision pathways are added to existing models or datasets in a controlled fashion. An analysis of studies from the incremental learning literature is presented, where the emphasis is on the mitigation of process complexity challenges such as, catastrophic forgetting. Further, practical implementation issues that are known to affect the complexity of deep learning model architecture, including memory allocation for incoming sequential data or incremental learning accuracy, is considered. The paper highlights case study results and methods that have been used to successfully mitigate such real-time manufacturing challenges.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive