DOI: 10.1302/1358-992x.2024.2.112 ISSN: 1358-992X


C. Vater, X. Tian, L. Findeisen, D.B. Raina, H. Kern, J. Bolte, L. Straßburger, L.-M. Matuszewski, N. Modler, R. Gottwald, A. Winkler, K.-D. Schaser, A.C. Disch, S. Zwingenberger

A novel EP4 selective agonist (KMN-159) was developed [1] and has been proven that it can act as an osteopromotive factor to repair critical-size femoral bone defects in rats at a dose-dependent manner [2]. Based on its osteopromotive properties, we hypothesized that KMN-159 could also aid in bone formation for spinal fusion. Therefore, the aim of this study was to investigate its spinal fusion effect in a dorsolateral spinal fusion model in rats. This study was performed on 192, 10-week-old male Wistar rats. The rats were randomized into 8 groups (n = 12 per group): 1) SHAM (negative control), 2) MCM (scaffold only), 3) MCM + 20 µg BMP-2 (positive control), 4-8) MCM + 0.2, 2, 20, 200 or 2000 µg KMN-159. A posterolateral intertransverse process spinal fusion at L4 to L5 was performed bilaterally by implanting group dependent scaffolds (see above) or left empty in the SHAM group (protocol no. 25-5131/474/38). Animals were euthanized after 3 weeks and 6 weeks for µCT and biomechanical testing analysis. The results showed that KMN-159 promoted new bone formation in a dose-dependent manner at 3 weeks and 6 weeks as verified by µCT. The biomechanical testing showed that the dose of 20, 200 and 2000 µg KMN-159 groups obtained comparable strength with BMP-2 group, which higher than SHAM, MCM and lower doses of 0.2 and 2 µg KMN-159 groups. In conclusion, KMN-159 could be a potential replacement of BMP-2 as a novel osteopromotive factor for spinal fusion.

Acknowledgements: We are grateful to Ulrike Heide, Anna-Maria Placht (assistance with surgeries) as well as Suzanne Manthey & Annett Wenke (histology).

More from our Archive