Zhu Yin, Xiaojian Ma, Hang Wang

A New Divergence Based on the Belief Bhattacharyya Coefficient with an Application in Risk Evaluation of Aircraft Turbine Rotor Blades

  • Artificial Intelligence
  • Human-Computer Interaction
  • Theoretical Computer Science
  • Software

Belief divergence is a significant measure to quantify the discrepancy between evidence, which is beneficial for conflict information management in Dempster–Shafer evidence theory. In this article, three new concepts are given, namely, the belief Bhattacharyya coefficient, adjustment function, and enhancement factor. And based on them, a novel enhanced belief divergence, called EBD, is proposed, which can assess the correlation of subsets and fully reflect the uncertainty of multielement sets. The important properties of the EBD have been studied. In particular, a new EBD-based multisource information fusion method is designed to handle evidence conflict, where the weight of evidence is decided by the EBD between evidence and the information volume of each evidence. Compared with other methods, the proposed method in the applications of target recognition and iris classification can produce more rational and telling outcomes when dealing with conflict information. Finally, an application in risk priority evaluation of the failure modes of rotor blades of an aircraft turbine is provided to validate that the proposed method has the extensive applicability.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive