DOI: 10.3390/rs15174160 ISSN:

A Method for Spatiotemporally Merging Multi-Source Precipitation Based on Deep Learning

Wei Fang, Hui Qin, Guanjun Liu, Xin Yang, Zhanxing Xu, Benjun Jia, Qianyi Zhang
  • General Earth and Planetary Sciences

Reliable precipitation data are essential for studying water cycle patterns and climate change. However, there are always temporal or spatial errors in precipitation data from various sources. Most precipitation fusion methods are influenced by high-dimensional input features and do not make good use of the spatial correlation between precipitation and environmental variables. Thus, this study proposed a novel multi-source precipitation spatiotemporal fusion method for improving the spatiotemporal accuracy of precipitation. Specifically, the attention mechanism was used to first select critical input information to dimensionalize the inputs, and the Convolutional long-short-term memory network (ConvLSTM) was used to merge precipitation products and environmental variables spatiotemporally. The Yalong River in the southeastern part of the Tibetan Plateau was used as the case study area. The results show that: (1) Compared with the original precipitation products (IMERG, ERA5 and CHIRPS), the proposed method has optimal accuracy and good robustness, and its correlation coefficient (CC) reaches 0.853, its root mean square coefficient (RMSE) decreases to 3.53 mm/d and its mean absolute error (MAE) decreases to 1.33 mm/d. (2) The proposed method can reduce errors under different precipitation intensities and greatly improve the detection capability for strong precipitation. (3) The merged precipitation generated by the proposed method can be used to describe the rainfall–runoff relationship and has good applicability. The proposed method may greatly improve the spatiotemporal accuracy of precipitation in complex terrain areas, which is important for scientific management and the allocation of water resources.

More from our Archive