Megan J Colwell, Stephen F Pernal, Robert W Currie

Treatment of waxborne honey bee (Hymenoptera: Apidae) viruses using time, temperature, and electron-beam irradiation

  • Insect Science
  • Ecology
  • General Medicine

Abstract Viruses are one of many serious threats to honey bee (Apis mellifera L.) health. There are many transmission routes for honey bee viruses, and there is potential for wax comb to act as a reservoir for transmission of viruses. Some work has been done on treating viruses on wax, focusing on irradiation as a potential treatment. However, irradiation is not universally available or economically viable for beekeepers in many regions. With increased colony deaths over winter beekeepers potentially risk further loss from reusing contaminated equipment from dead colonies. Here we explored the use of storage time and temperature on the reduction of waxborne virus levels from winter loss colony wax over 30 days and at −20, 5, and 20 °C. Furthermore, because irradiation has previously worked against waxborne viruses, we performed a dosage experiment with electron-beam irradiation. Winter loss wax was again used, and exposed to 10, 25, 35, and 45 kGy irradiation, including a nonirradiated transport control. Storage time decreased abundance of black queen cell virus and deformed wing virus at times equal or greater than 30 days but temperatures had no significant effect on virus levels. All irradiation doses decreased virus abundance and prevalence, yet only 35 and 45 kGy did so at a greater rate than the effect of transport alone.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive