Transient Response of Homogenous and Nonhomogenous Bernoulli Production Lines
Neven Hadžić, Viktor Ložar, Tihomir Opetuk, Robert Keser- General Mathematics
- Engineering (miscellaneous)
- Computer Science (miscellaneous)
The transient response of production systems is of significant importance especially if present advancements in Digital Twinning technology are taken into account. While the steady-state response enables long-term strategic decision making, the transient response enables more detailed simulation concerning aspects like production losses and preventive maintenance. This is especially relevant if nonhomogenous aspects of production systems are taken into account. An analytical and approximative solution to the problem of the transient response of homogenous and nonhomogenous Bernoulli production systems is developed in this paper based on the eigendecomposition of transition matrices, the eigenvalue problem, and the finite-state method. In particular, sub-resonant and resonant nonhomogeneous production lines are introduced for the first time. Also, the most significant key performance indicators are developed as functions of the time elapsed from the first cycle. Finally, the relationship between the number of eigenvalues and the accuracy of the results is inspected by employing a sensitivity analysis. The presented theoretical framework was employed in the case of a wood processing facility to present the potential application of the theory in the case of long- and short-term management of production systems.