DOI: 10.3390/ph16091214 ISSN:

Targeting Autophagy, Apoptosis, and SIRT1/Nrf2 Axis with Topiramate Underlies Its Neuroprotective Effect against Cadmium-Evoked Cognitive Deficits in Rats

Hany H. Arab, Ahmed H. Eid, Rania Yahia, Shuruq E. Alsufyani, Ahmed M. Ashour, Azza A. K. El-Sheikh, Hany W. Darwish, Muhammed A. Saad, Muhammad Y. Al-Shorbagy, Marwa A. Masoud
  • Drug Discovery
  • Pharmaceutical Science
  • Molecular Medicine

Cadmium is an environmental toxicant that instigates cognitive deficits with excessive glutamate excitatory neuroactivity in the brain. Topiramate, a glutamate receptor antagonist, has displayed favorable neuroprotection against epilepsy, cerebral ischemia, and Huntington’s disease; however, its effect on cadmium neurotoxicity remains to be investigated. In this study, topiramate was tested for its potential to combat the cognitive deficits induced by cadmium in rats with an emphasis on hippocampal oxidative insult, apoptosis, and autophagy. After topiramate intake (50 mg/kg/day; p.o.) for 8 weeks, behavioral disturbances and molecular changes in the hippocampal area were explored. Herein, Morris water maze, Y-maze, and novel object recognition test revealed that topiramate rescued cadmium-induced memory/learning deficits. Moreover, topiramate significantly lowered hippocampal histopathological damage scores. Mechanistically, topiramate significantly replenished hippocampal GLP-1 and dampened Aβ42 and p-tau neurotoxic cues. Notably, it significantly diminished hippocampal glutamate content and enhanced acetylcholine and GABA neurotransmitters. The behavioral recovery was prompted by hippocampal suppression of the pro-oxidant events with notable activation of SIRT1/Nrf2/HO-1 axis. Moreover, topiramate inactivated GSK-3β and dampened the hippocampal apoptotic changes. In tandem, stimulation of hippocampal pro-autophagy events, including Beclin 1 upregulation, was triggered by topiramate that also activated AMPK/mTOR pathway. Together, the pro-autophagic, antioxidant, and anti-apoptotic features of topiramate contributed to its neuroprotective properties in rats intoxicated with cadmium. Therefore, it may be useful to mitigate cadmium-induced cognitive deficits.

More from our Archive