DOI: 10.1515/tjj-2023-0058 ISSN:

Study on one-dimensional performance prediction of multi-stage axial turbine based on the blade height

Ke-wen Xu, Ze Yuan, Zhao-lin Li, Guo-qiang Yue
  • Aerospace Engineering

Abstract

As turbine operating conditions change, the blade height and tip clearance undergo continuous alterations due to the combined effects of thermal stress, aerodynamic forces and centrifugal forces, subsequently influencing the turbine performance. To take this effect into account in turbine performance prediction, this study considers the influence of fluid-heat-structure coupling on blade height and tip clearance and establishes a one-dimensional comprehensive prediction method for multi-stage axial turbine performance considering blade height. When compared with experimental results from a four-stage axial turbine, by considering the fluid-thermal-solid coupling effects, the average relative error in total pressure ratio prediction is reduced from 3.76 % to 1.99 % and the average relative error in total temperature ratio prediction is reduced from 2.03 % to 1.26 %. Compared with the traditional flow prediction method, the prediction results of turbine characteristics considering blade height and tip clearance changes in this paper are closer to the experimental results.

More from our Archive