DOI: 10.1093/cvr/cvae058 ISSN: 0008-6363

Stem cell factor and cKIT modulate endothelial glycolysis in hypoxia

Hayoung Jeong, Ryul-I Kim, Hyunwoo Koo, Yang Hee Choi, Minju Kim, Hyejin Roh, Sang Gyu Park, Jong-Hyuk Sung, Koung Li Kim, Wonhee Suh
  • Physiology (medical)
  • Cardiology and Cardiovascular Medicine
  • Physiology

Abstract

Aims

In hypoxia, endothelial cells proliferate, migrate, and form new vasculature in a process called angiogenesis. Recent studies have suggested that endothelial cells rely on glycolysis to meet metabolic needs for angiogenesis in ischemic tissues and several studies have investigated the molecular mechanisms integrating angiogenesis and endothelial metabolism. Here, we investigated the role of stem cell factor (SCF) and its receptor, cKIT, in regulating endothelial glycolysis during hypoxia-driven angiogenesis.

Methods and results

SCF and cKIT signaling increased the glucose uptake, lactate production, and glycolysis in human endothelial cells under hypoxia. Mechanistically, SCF and cKIT signaling enhanced the expression of genes encoding glucose transporter 1 (GLUT1) and glycolytic enzymes via Akt- and ERK1/2-dependent increased translation of hypoxia inducible factor 1A (HIF1A). In hypoxic conditions, reduction of glycolysis and HIF-1α expression using chemical inhibitors significantly reduced the SCF-induced in vitro angiogenesis in human endothelial cells. Compared with normal mice, mice with oxygen-induced retinopathy (OIR), characterized by ischemia-driven pathological retinal neovascularization, displayed increased levels of SCF, cKIT, HIF-1α, GLUT1, and glycolytic enzymes in the retina. Moreover, cKIT-positive neovessels in the retina of mice with OIR showed elevated expression of GLUT1 and glycolytic enzymes. Further, blocking SCF and cKIT signaling using anti-SCF neutralizing IgG and cKIT mutant mice significantly reduced the expression of HIF-1α, GLUT1, and glycolytic enzymes and decreased the pathological neovascularization in the retina of mice with OIR.

Conclusion

We demonstrated that SCF and cKIT signaling regulates angiogenesis by controlling endothelial glycolysis in hypoxia and elucidated the SCF/cKIT/HIF-1α axis as a novel metabolic regulation pathway during hypoxia-driven pathological angiogenesis.

More from our Archive