DOI: 10.1063/1.1713333 ISSN:

Stability of a Planar Interface During Solidification of a Dilute Binary Alloy

W. W. Mullins, R. F. Sekerka
  • General Physics and Astronomy

The stability of the shape of a moving planar liquid-solid interface during the unidirectional freezing of a dilute binary alloy is theoretically investigated by calculating the time dependence of the amplitude of a sinusoidal perturbation of infinitesimal amplitude introduced into the planar shape. The calculation is accomplished by using gradients of the steady-state thermal and diffusion fields satisfying the perturbed boundary conditions (capillarity included) to determine the velocity of each element of interface, a procedure justified in some detail. Instability occurs if any Fourier component of an arbitrary perturbation grows; stability occurs if all components decay. A stability criterion expressed in terms of growth parameters and system characteristics is thereby deduced and is compared with the currently used stability criterion of constitutional supercooling; some very marked differences are discussed.

More from our Archive