DOI: 10.1002/anie.201604802 ISSN:

Single Cobalt Atoms with Precise N‐Coordination as Superior Oxygen Reduction Reaction Catalysts

Peiqun Yin, Tao Yao, Yuen Wu, Lirong Zheng, Yue Lin, Wei Liu, Huanxin Ju, Junfa Zhu, Xun Hong, Zhaoxiang Deng, Gang Zhou, Shiqiang Wei, Yadong Li
  • General Chemistry
  • Catalysis


A new strategy for achieving stable Co single atoms (SAs) on nitrogen‐doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal–organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X‐ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as‐generated N‐doped porous carbon. Surprisingly, the obtained Co‐Nx single sites exhibit superior ORR performance with a half‐wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non‐precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials.

More from our Archive