Robert W. Graves

Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences

  • Geochemistry and Petrology
  • Geophysics

Abstract This article provides an overview of the application of the staggered-grid finite-difference technique to model wave propagation problems in 3D elastic media. In addition to presenting generalized, discrete representations of the differential equations of motion using the staggered-grid approach, we also provide detailed formulations that describe the incorporation of moment-tensor sources, the implementation of a stable and accurate representation of a planar free-surface boundary for 3D models, and the derivation and implementation of an approximate technique to model spatially variable anelastic attenuation within time-domain finite-difference computations. The comparison of results obtained using the staggered-grid technique with those obtained using a frequency-wavenumber algorithm shows excellent agreement between the two methods for a variety of models. In addition, this article also introduces a memory optimization procedure that allows large-scale 3D finite-difference problems to be computed on a conventional, single-processor desktop workstation. With this technique, model storage is accommodated using both external (hard-disk) and internal (core) memory. To reduce system overhead, a cascaded time update procedure is utilized to maximize the number of computations performed between I/O operations. This formulation greatly expands the applicability of the 3D finite-difference technique by providing an efficient and practical algorithm for implementation on commonly available workstation platforms.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive