DOI: 10.3390/photonics10090961 ISSN:

Robust Topological Edge States in C6 Photonic Crystals

Daniel Borges-Silva, Carlos Humberto Oliveira Costa, Claudionor Gomes Bezerra
  • Radiology, Nuclear Medicine and imaging
  • Instrumentation
  • Atomic and Molecular Physics, and Optics

The study of photonic crystals has emerged as an attractive area of research in nanoscience in the last years. In this work, we study the properties of a two-dimensional photonic crystal composed of dielectric rods. The unit cell of the system is composed of six rods organized on the sites of a C6 triangular lattice. We induce a topological phase by introducing an angular perturbation ϕ in the pristine system. The topology of the system is then determined by using the so-called k.p perturbed model. Our results show that the system presents a topological and a trivial phase, depending on the sign of the angular perturbation ϕ. The topological character of the system is probed by evaluating the electromagnetic energy density and analyzing its distribution in the real space, in particular on the maximal Wyckoff points. We also find two edge modes at the interface between the trivial and topological photonic crystals, which present a pseudospin topological behavior. By applying the bulk-edge correspondence, we study the pseudospin edge modes and conclude that they are robust against defects, disorder and reflection. Moreover, the localization of the edge modes leads to the confinement of light and the interface behaves as a waveguide for the propagation of electromagnetic waves. Finally, we show that the two edge modes present energy flux propagating in opposite directions, which is the photonic analogue of the quantum spin Hall effect.

More from our Archive