DOI: 10.3390/en16176178 ISSN:

Review: The Energy Implications of Averting Climate Change Catastrophe

Patrick Moriarty, Damon Honnery
  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Engineering (miscellaneous)
  • Building and Construction

Conventional methods of climate change (CC) mitigation have not ‘bent the curve’ of steadily rising annual anthropic CO2 emissions or atmospheric concentrations of greenhouse gases. This study reviews the present position and likely future of such methods, using the recently published literature with a global context. It particularly looks at how fast they could be implemented, given the limited time available for avoiding catastrophic CC (CCC). This study then critically examines solar geoengineering, an approach often viewed as complementary to conventional mitigation. Next, this review introduces equity considerations and shows how these even further shorten the available time for effective action for CC mitigation. The main findings are as follows. Conventional mitigation approaches would be implemented too slowly to be of much help in avoiding CCC, partly because some suggested technologies are infeasible, while others are either of limited technical potential or, like wind and solar energy, cannot be introduced fast enough. Due to these problems, solar geoengineering is increasingly advocated for as a quick-acting and effective solution. However, it could have serious side effects, and, given that there would be winners and losers at the international level as well as at the more regional level, political opposition may make it very difficult to implement. The conclusion is that global energy consumption itself must be rapidly reduced to avoid catastrophic climate change, which requires strong policy support.

More from our Archive