DOI: 10.3390/buildings13082105 ISSN:

Review of the Properties of Sustainable Cementitious Systems Incorporating Ceramic Waste

Amin Al-Fakih, Ali Odeh, Mohammed Abdul Azeez Mahamood, Madyan A. Al-Shugaa, Mohammed A. Al-Osta, Shamsad Ahmad
  • Building and Construction
  • Civil and Structural Engineering
  • Architecture

Global carbon dioxide emissions can be attributed to Portland cement production; thus, an alternative cementitious system is essential to reduce cement demand. Ceramic waste powder (CWP), which contains high proportions of silica and alumina, has emerged as a promising alternative because of its chemical composition. This review discusses the potential of CWP as an alternative cementitious system and its effects on the physical, mechanical, and durability properties of cementitious systems. The findings revealed that the utilization of CWP in cementitious systems has positive effects on their physical, mechanical, and durability properties owing to the chemical composition of CWP, which can act as a filler material or contribute to the pozzolanic reaction. A pozzolanic reaction occurs between the silica and alumina in the CWP and calcium hydroxide in the cement, resulting in the production of additional cementitious materials such as calcium silicate hydrates and calcium aluminate hydrates. These additional materials can improve the strength and durability of cementitious systems. Various studies have demonstrated that CWP can be effectively used as a partial replacement for cement in cementitious systems. This can reduce the carbon footprint of construction activities by reducing the demand for Portland cement. However, the optimal amount and particle size of CWP have not been fully determined, and further research is required to optimize its use in cementitious systems. In addition, the technical and economic challenges associated with the use of CWP in construction must be further investigated to ensure its effective implementation.

More from our Archive