DOI: 10.3390/en16166042 ISSN:

Review of Low Inertia in Power Systems Caused by High Proportion of Renewable Energy Grid Integration

Jiyu Song, Xinhang Zhou, Zhiquan Zhou, Yang Wang, Yifan Wang, Xutao Wang
  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Engineering (miscellaneous)
  • Building and Construction

With the power industry moving toward a green and low-carbon direction, renewable energy is occupying an increasingly larger share in the power system. However, compared with traditional thermal power generation, the instability of new energy generation is very prominent, which also leads to a decrease in the inertia of the power system after the grid integration of a high proportion of renewable energy. If no measures are taken, this may lead to frequency collapse accidents. Therefore, this paper first introduces two international major power outage accidents that have occurred in recent years, analyzing the causes, and then summarizes the inspiration obtained from the accidents. Subsequently, some research results on low inertia-related issues in the power system caused by the high proportion of new energy grid integration in recent years were summarized and analyzed from three aspects: inertia evaluation methods, optimal operation measures for the power system, and under frequency load-shedding (the abbreviation “ULFS” in the following text stands for it) schemes. Finally, suggestions were made for future research directions.

More from our Archive