DOI: 10.1145/3653074 ISSN: 2378-962X

Path Planning for UAVs Under GPS Permanent Faults

M Hani Sulieman, Mengyu Liu, M Cenk Gursoy, Fanxin Kong
  • Artificial Intelligence
  • Control and Optimization
  • Computer Networks and Communications
  • Hardware and Architecture
  • Human-Computer Interaction

Unmanned aerial vehicles (UAVs) have various applications in different settings, including e.g., surveillance, packet delivery, emergency response, data collection in the Internet of Things (IoT), and connectivity in cellular networks. However, this technology comes with many risks and challenges such as vulnerabilities to malicious cyber-physical attacks. This paper studies the problem of path planning for UAVs under GPS sensor permanent faults in a cyber-physical system (CPS) perspective. Based on studying and analyzing the CPS architecture of the UAV, the cyber “attacks and threats” are differentiated from attacks on sensors and communication components. An efficient way to address this problem is to introduce a novel approach for UAV’s path planning resilience to GPS permanent faults artificial potential field algorithm (RCA-APF). The proposed algorithm completes the three stages in a coordinated manner. In the first stage, the permanent faults on the GPS sensor of the UAV are detected, and the UAV starts to divert from its initial path planning. In the second stage, we estimated the location of the UAV under GPS permanent fault using Received Signal Strength (RSS) trilateration localization approach. In the final stage of the algorithm, we implemented the path planning of the UAV using an open-source UAV simulator. Experimental and simulation results demonstrate the performance of the algorithm and its effectiveness, resulting in efficient path planning for the UAV.

More from our Archive