Igor Prokofev, Nidal Salim

Off‐isocentric VMAT technique for breast cancer: Effective dose reduction to organs at risk and its applicability based on patient anatomy

  • Radiology, Nuclear Medicine and imaging
  • Instrumentation
  • Radiation

AbstractPurposeThis study aims to explore the off‐isocentric volumetric modulated arc therapy (offVMAT) technique for breast cancer and determine its applicability based on patient anatomical parameters.MethodsWe retrospectively analyzed 44 breast cancer patients with varied lymph node involvement using different arc designs. Off‐isocentric techniques were benchmarked against previously published arc techniques: classic arcs (clVMAT), tangential arcs (tVMAT), and split arcs (spVMAT). During optimization, target coverage was made for all plans as close as possible to the criteria D99% > 95% and Dmax < 110% of the prescribed dose. A novel patient categorization, based on anatomical parameters (auxiliary structures) rather than lymph node involvement, is introduced. This categorization considers the volume of ipsilateral organs at risk (OARs) adjacent to the target. A binary regression model was developed on these anatomical parameters. It predicts the likelihood of offVMAT (P[offVMAT]) achieving better criteria.ResultsUsing the regression model, patients were divided into two groups: P(offVMAT) > 0.5 and P(offVMAT) < 0.5. For the P(offVMAT) > 0.5 group, most tVMAT plans are unable to achieve the clinical objectives. Comparing offVMAT with spVMAT, offVMAT exhibited better dose parameters for the heart (V20, V10, and D2 are 7.1, 2.4, and 1.5 times lower respectively), ipsilateral lung (V20, V10, V5 and the mean dose are 1.4, 1.3, 1.2, and 1.2 times lower respectively). The average doses to the contralateral side are consistent. In the P(offVMAT) < 0.5 group, the tVMAT technique showed increased doses at medium and high levels, yet reduced doses in contralateral OARs compared to spVMAT and offVMAT. spVMAT showed lower doses in the contralateral lung relative to the offVMAT technique, while clVMAT trailed in both groups. Validation of the model yielded a 90% accuracy rate.ConclusionsThe new off‐isocentric breast planning technique effectively reduces doses to ipsilateral OARs, maintaining acceptable contralateral mean doses. This technique has an advantage over other techniques for patients with intricate anatomies. It is evaluated using anatomical parameters, which are also used to build binary regression model, which shows the dependence of anatomical parameters on whether offVMAT is preferred for individual patients. Also, such anatomical parameters provide a more objective and precise comparison between different planning techniques.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive