M. Rivier, N. Razaaly, P.M. Congedo

Non‐parametric measure approximations for constrained multi‐objective optimisation under uncertainty

  • Applied Mathematics
  • General Engineering
  • Numerical Analysis

AbstractIn this article, we propose non‐parametric estimations of robustness and reliability measures approximation error, employed in the context of constrained multi‐objective optimisation under uncertainty (OUU). These approximations with tunable accuracy permit to capture the Pareto front in a parsimonious way, and can be exploited within an adaptive refinement strategy. First, we illustrate an efficient approach for obtaining joint representations of the robustness and reliability measures, allowing sharper discrimination of Pareto‐optimal designs. A specific surrogate model of these objectives and constraints is then proposed to accelerate the optimisation process. Secondly, we propose an adaptive refinement strategy, using these tunable accuracy approximations to drive the computational effort towards the computation of the optimal area. To this extent, an adapted Pareto dominance rule and Pareto optimal probability computation are formulated. The performance of the proposed strategy is assessed on several analytical test‐cases against classical approaches. We also illustrate the method on an engineering application, performing shape OUU of an Organic Rankine Cycle turbine.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive