Mahmoud M. Abdelwahab, Mohamed R. Abonazel, Ali T. Hammad, Amera M. El-Masry

Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model

  • Geometry and Topology
  • Logic
  • Mathematical Physics
  • Algebra and Number Theory
  • Analysis

This study introduces a new two-parameter Liu estimator (PMTPLE) for addressing the multicollinearity problem in the Poisson regression model (PRM). The estimation of the PRM is traditionally accomplished through the Poisson maximum likelihood estimator (PMLE). However, when the explanatory variables are correlated, thus leading to multicollinearity, the variance or standard error of the PMLE is inflated. To address this issue, several alternative estimators have been introduced, including the Poisson ridge regression estimator (PRRE), Liu estimator (PLE), and adjusted Liu estimator (PALE), each of them relying on a single shrinkage parameter. The PMTPLE uses two shrinkage parameters, which enhances its adaptability and robustness in the presence of multicollinearity between explanatory variables. To assess the performance of the PMTPLE compared to the four existing estimators (the PMLE, PRRE, PLE, and PALE), a simulation study is conducted that encompasses various scenarios and two empirical applications. The evaluation of the performance is based on the mean square error (MSE) criterion. The theoretical comparison, simulation results, and findings of the two applications consistently demonstrate the superiority of the PMTPLE over the other estimators, establishing it as a robust solution for count data analysis under multicollinearity conditions.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive