Dmitry Stenkin, Vladimir Gorbachenko

Mathematical Modeling on a Physics-Informed Radial Basis Function Network

  • General Mathematics
  • Engineering (miscellaneous)
  • Computer Science (miscellaneous)

The article is devoted to approximate methods for solving differential equations. An approach based on neural networks with radial basis functions is presented. Neural network training algorithms adapted to radial basis function networks are proposed, in particular adaptations of the Nesterov and Levenberg-Marquardt algorithms. The effectiveness of the proposed algorithms is demonstrated for solving model problems of function approximation, differential equations, direct and inverse boundary value problems, and modeling processes in piecewise homogeneous media.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive