DOI: 10.3390/coatings14030369 ISSN: 2079-6412

Heat of Hydration Analysis and Temperature Field Distribution Study for Super-Long Mass Concrete

Sanling Zhang, Peng Liu, Lei Liu, Jingxiang Huang, Xiang Cheng, Ying Chen, Lei Chen, Sasa He, Ning Zhang, Zhiwu Yu
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

In this study, the combination of ordinary cement concrete (OCC) and shrinkage-compensating concrete (SCC) was utilized to pour super-long mass concrete. The temperature and strain of the concrete were continuously monitored and managed actively after pouring. The investigation focused on the temporal and spatial distribution patterns of the temperature field, the temperature difference between the core and surface, and the strain evolution. Based on the constructed hydration exothermic model of layered poured concrete, the effects of the SCC, molding temperature, and surface heat transfer coefficient on the temperature field were analyzed. The results show that the temperature of super-long mass concrete rises quickly but falls slowly. SCC exhibits higher total hydration heat than OCC. The temperature field is symmetric along the length but asymmetric along the thickness due to varying efficiency of heat dissipation between the upper and lower parts of the concrete. After final setting of the concrete, the strain varies opposite to the temperature and peaks at −278 με. A few short cracks are observed on the end of the upper surface. Moreover, the numerical simulation results are in good agreement with the measured results. Increasing the molding temperature and surface wind speed increases the temperature difference between the core and surface. Conversely, increasing the thickness of the insulation layer is an effective way to curtail this difference. Thermal stress analysis is carried out and shows that lowering the molding temperature of SCC and increasing the thickness of insulation material can effectively reduce thermal stress.

More from our Archive