DOI: 10.1002/adma.202311562 ISSN: 0935-9648

Flexible Indoor Perovskite Solar Cells by in Situ Bottom‐up Crystallization Modulation and Interfacial Passivation

Chou Liu, Tinghuan Yang, Weilun Cai, Yajie Wang, Xin Chen, Shumei Wang, Wenliang Huang, Yachao Du, Nan Wu, Zhichao Wang, Yang Yang, Jiangshan Feng, Tianqi Niu, Zicheng Ding, Kui Zhao
  • Mechanical Engineering
  • Mechanics of Materials
  • General Materials Science

Abstract

A robust perovskite‐buried interface is pivotal for achieving high‐performance flexible indoor photovoltaics as it significantly influences charge transport and extraction efficiency. Herein, we introduce a molecular bridge strategy utilizing sodium 2‐cyanoacetate (SZC) additive at the perovskite‐buried interface to simultaneously achieve in situ passivation of interfacial defects and bottom‐up crystallization modulation, resulting in high performance flexible indoor photovoltaic applications. Supported by both theoretical calculations and experimental evidences, we illustrate how SZCs serve as molecular bridges, establishing robust bonds between SnO2 transport layer and perovskite, mitigating oxygen vacancy defects and under‐coordinated Pb defects at interface during flexible fabrication. This, in turn, enhances interfacial energy level alignment and facilitates efficient carrier transport. Moreover, our in situ investigation of perovskite crystallization dynamics reveals bottom‐up crystallization modulation, extending perovskite growth at the buried interface and influencing subsequent surface recrystallization. This results in larger crystalline grains and improved lattice strain of the perovskite during flexible fabrication. Finally, the optimized flexible solar cells achieve an impressive efficiency exceeding 41% at 1000 lux, with a fill factor as high as 84.32%. The concept of the molecular bridge represents a significant advancement in enhancing the performance of perovskite‐based flexible indoor photovoltaics for the upcoming era of the Internet of Things (IoT ).

This article is protected by copyright. All rights reserved

More from our Archive