DOI: 10.1002/ldr.4885 ISSN:

Effects of fertilizer application strategies on soil organic carbon and total nitrogen storage under different agronomic practices: A meta‐analysis

N'Dri Yves Bohoussou, Shou‐Wei Han, Hao‐Ran Li, Yao Dinard Kouadio, Irsa Ejaz, Ahmad Latif Virk, Yash Pal Dang, Xin Zhao, Hai‐Lin Zhang
  • Soil Science
  • General Environmental Science
  • Development
  • Environmental Chemistry


Fertilizer application strategies can impact soil health, mainly soil organic carbon (SOC) and total nitrogen (TN) sequestration, which are essential in mitigating climate change. Many studies have been conducted on the influence of fertilizer use on SOC and TN storage. Results can, however, be variable in different sites because of various management practices and environmental conditions; therefore, we conducted a global meta‐analysis of 953 observations from 143 papers on the impact of different fertilizers (mineral N (NF), manure (Mn) and mixed fertilizers (MNF: combination of mineral and organic fertilizer)) on SOC and TN storage under various cropping systems and environmental conditions in agricultural land. The results showed that MNF led to the greatest SOC and TN stocks. Noticeably, animal Mn sequestered higher amounts of SOC and TN compared to green Mn. In addition, MNF increases SOC in the medium term (10–20 years, 43.71%) and TN in the short term (0–10 years, 40.85%), which could be related to their nutrient's cycles and residence time in the soil. The higher effectiveness of SOC and TN sequestration (12.84% and 27.42%, respectively) under NF was observed at high rates >250 kg N/ha in comparison to low rates of 0–250 kg N/ha. A significant SOC increment was observed with MNF (37.76%) and Mn (19.45%) under continuous cropping (monoculture) than crop rotations. In contrast, TN was higher with MNF (58.31%) and Mn (18.23%) with crop rotations. The subhumid and semi‐arid zones had greater increase in SOC (28.24%) and TN (74.54%) stock in comparison to other climatic conditions. Overall, this study emphasized that MNF could optimize SOC and TN storage in agricultural soils depending upon edaphic and regional climatic conditions.

More from our Archive