Guoqing Mao, Yao Tian, Jinchao Shi, Changzhou Liao, Weiwei Huang, Yiran Wu, Zhou Wen, Linhua Yu, Xiang Zhu, Junkai Li

Design, Synthesis, Antibacterial, and Antifungal Evaluation of Phenylthiazole Derivatives Containing a 1,3,4-Thiadiazole Thione Moiety

  • Chemistry (miscellaneous)
  • Analytical Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Molecular Medicine
  • Drug Discovery
  • Pharmaceutical Science

To effectively control the infection of plant pathogens, we designed and synthesized a series of phenylthiazole derivatives containing a 1,3,4-thiadiazole thione moiety and screened for their antibacterial potencies against Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, as well as their antifungal potencies against Sclerotinia sclerotiorum, Rhizoctonia solani, Magnaporthe oryzae and Colletotrichum gloeosporioides. The chemical structures of the target compounds were characterized by 1H NMR, 13C NMR and HRMS. The bioassay results revealed that all the tested compounds exhibited moderate-to-excellent antibacterial and antifungal activities against six plant pathogens. Especially, compound 5k possessed the most remarkable antibacterial activity against R. solanacearum (EC50 = 2.23 μg/mL), which was significantly superior to that of compound E1 (EC50 = 69.87 μg/mL) and the commercial agent Thiodiazole copper (EC50 = 52.01 μg/mL). Meanwhile, compound 5b displayed the most excellent antifungal activity against S. sclerotiorum (EC50 = 0.51 μg/mL), which was equivalent to that of the commercial fungicide Carbendazim (EC50 = 0.57 μg/mL). The preliminary structure-activity relationship (SAR) results suggested that introducing an electron-withdrawing group at the meta-position and ortho-position of the benzene ring could endow the final structure with remarkable antibacterial and antifungal activity, respectively. The current results indicated that these compounds were capable of serving as promising lead compounds.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive