DOI: 10.3390/min13121508 ISSN: 2075-163X

Deeply Derived Magma Controlling the Polymetallic Mineralization at Shuikoushan, South China: Constraints from Mineral U–Pb Dating and Whole-Rock Geochemistry

Jionghui Wang, Yulong Du, Fanghua Zhang, Qiushi Li, Changhu Zuo, Xi Zhang, Yong Wang, Jiangwei Wu, Shengchao Ma
  • Geology
  • Geotechnical Engineering and Engineering Geology

Various magmatic–hydrothermal activities have resulted in different styles of polymetallic mineralization in South China. Shuikoushan is a large Fe-Cu-Pb-Zn-Au-Ag orefield situated in fold-and-thrust belts within the South China Block. Two types of granodiorite have been identified in recent drilling work. The early-stage, coarse-grained granodiorite has developed magnetite-bearing skarns in the deep level. The late-stage, fine-grained granodiorite is associated with garnet-hematite–magnetite–pyrite–sphalerite–chalcopyrite-bearing skarns in its contact zone. Away from the garnet-bearing skarn are calcite–quartz–pyrite–sphalerite–galena veinlets in faulted breccia. Fieldwork has identified iron mineralization in both skarns, whereas copper mineralization was only discovered in the garnet-bearing skarns. Lead, zinc, gold, and silver mineralization were observed in the garnet-bearing skarns and faulted breccia. Zircon U–Pb analyses suggested the emplacement of two granodiorite at 167.8 ± 0.8 Ma (MSWD = 1.1, N = 31) and 163.6 ± 0.7 Ma (MSWD = 1.3, N = 32). Apatite and garnet U–Pb dating further indicated the magnetite-bearing skarns of 166.2 ± 1.9 Ma (MSWD = 4.5, N = 27), the hematite–magnetite–sulfide-bearing skarns of 158.6 ± 2.8 Ma (MSWD = 1.3, N = 34), and the calcite–quartz–sulfide veinlets of 159.5 ± 5.2 Ma (MSWD = 1.7, N = 24). The time–space relationship between the two intrusions and hydrothermal activities suggests that the fine-grained granodiorite is responsible for polymetallic mineralization. Whole-rock geochemistry analyses demonstrated the enrichment of LILEs and the depletion of Nb and Ta in two granodiorites, with a slight enrichment in LREEs and flat HREE patterns. These granodiorite bodies therefore belong to high-K calc-alkaline magma generated via the crust’s partial melting. The fine-grained granodiorite generally has a lower HREE and higher Dy/Yb, Sr/Y ratios than coarse-grained granodiorite, corresponding to the source of magma in garnet stable lower crust. The residual garnet keeps ferric iron in melts, leaving the fine-granodiorite more oxidized for copper and gold concentration. Through these analyses and our drilling work, a continuous skarn–hydrothermal–epithermal system has been identified for Cu-Pb-Zn-Au-Ag targeting in Shuikoushan.

More from our Archive