Jonah Glick, Zilin Chen, Tejas Deshpande, Yiping Wang, Tim Kovachy

Coriolis force compensation and laser beam delivery for 100-m baseline atom interferometry

  • Electrical and Electronic Engineering
  • Computational Theory and Mathematics
  • Physical and Theoretical Chemistry
  • Computer Networks and Communications
  • Condensed Matter Physics
  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials

The Coriolis force is a significant source of systematic phase errors and dephasing in atom interferometry and is often compensated by counter-rotating the interferometry laser beam against Earth's rotation. We present a novel method for performing Coriolis force compensation for long-baseline atom interferometry, which mitigates atom-beam misalignment due to beam rotation, an effect which is magnified by the long lever arm of the baseline length. The method involves adjustment of the angle of the interferometer beam prior to a magnifying telescope, enabling the beam to pivot around a tunable position along the interferometer baseline. By tuning the initial atom kinematics and adjusting the angle with which the interferometer beam pivots about this point, we can ensure that the atoms align with the center of the beam during the atom optics laser pulses. This approach will be used in the MAGIS-100 atom interferometer and could also be applied to other long-baseline atom interferometers. An additional challenge associated with long baseline interferometry is that since long-baseline atom interferometers are often located outside of typical laboratory environments, facilities constraints may require lasers to be housed in a climate-controlled room a significant distance away from the main experiment. Nonlinear effects in optical fibers restrict the use of fiber-based transport of the high-power interferometry beam from the laser room to the experiment. We present the design of and prototype data from a laser transport system for MAGIS-100 that maintains robustness against alignment drifts despite the absence of a long fiber.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive