Igor Noll Guagnoni, Vinicius Araújo Armelin, Victor Hugo da Silva Braga, Diana Amaral Monteiro, Luiz Henrique Florindo

Cardiovascular responses and the role of the neurohumoral cardiac regulation during digestion in the herbivorous lizard Iguana iguana

  • Insect Science
  • Molecular Biology
  • Animal Science and Zoology
  • Aquatic Science
  • Physiology
  • Ecology, Evolution, Behavior and Systematics

Carnivorous reptiles exhibit an intense metabolic increment during digestion, which is accompanied by several cardiovascular adjustments responsible for supplying the physiological demands of the gastrointestinal system. Postprandial tachycardia, a well-documented phenomenon in these animals, is mediated by the withdrawal of vagal tone associated with the chronotropic effects of non-adrenergic and non-cholinergic (NANC) factors. However, herbivorous reptiles exhibit a modest metabolic increment during digestion and there is no information about postprandial cardiovascular adjustments. Considering the significant impact of feeding characteristics on physiological responses, we investigated cardiovascular and metabolic responses, as well as the neuro-humoral mechanisms of cardiac control, in the herbivorous lizard Iguana iguana during digestion. We measured oxygen consumption (VO2), heart rate (fH), mean arterial blood pressure (MAP), myocardial activity, cardiac autonomic tone, fH/MAP variability, and baroreflex efficiency in both fasting and digesting animals before and after parasympathetic blockade with atropine followed by double autonomic blockade with atropine and propranolol. Our results revealed that the peak of VO2 in iguanas was reached 24 h after feeding, accompanied by an increase in myocardial activity and a subtle tachycardia mediated exclusively by a reduction in cardiac parasympathetic activity. This represents the first reported case of postprandial tachycardia in digesting reptiles without the involvement of NANC factors. Furthermore, this withdrawal of vagal stimulation during digestion may reduce the regulatory range for short-term fH adjustments, subsequently intensifying the blood pressure variability as a consequence of limiting baroreflex efficiency.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive