Candidate Gene Identification and Transcriptome Analysis of Tomato male sterile-30 and Functional Marker Development for ms-30 and Its Alleles, ms-33, 7B-1, and stamenless-2
Kai Wei, Xin Li, Xue Cao, Shanshan Li, Li Zhang, Feifei Lu, Chang Liu, Yanmei Guo, Lei Liu, Can Zhu, Yongchen Du, Junming Li, Wencai Yang, Zejun Huang, Xiaoxuan Wang- Inorganic Chemistry
- Organic Chemistry
- Physical and Theoretical Chemistry
- Computer Science Applications
- Spectroscopy
- Molecular Biology
- General Medicine
- Catalysis
Male sterility is a valuable trait for hybrid seed production in tomato (Solanum lycopersicum). The mutants male sterile-30 (ms-30) and ms-33 of tomato exhibit twisted stamens, exposed stigmas, and complete male sterility, thus holding potential for application in hybrid seed production. In this study, the ms-30 and ms-33 loci were fine-mapped to 53.3 kb and 111.2 kb intervals, respectively. Tomato PISTILLATA (TPI, syn. SlGLO2), a B-class MADS-box transcription factor gene, was identified as the most likely candidate gene for both loci. TPI is also the candidate gene of tomato male sterile mutant 7B-1 and sl-2. Allelism tests revealed that ms-30, ms-33, 7B-1, and sl-2 were allelic. Sequencing analysis showed sequence alterations in the TPI gene in all these mutants, with ms-30 exhibiting a transversion (G to T) that resulted in a missense mutation (S to I); ms-33 showing a transition (A to T) that led to alternative splicing, resulting in a loss of 46 amino acids in protein; and 7B-1 and sl-2 mutants showing the insertion of an approximately 4.8 kb retrotransposon. On the basis of these sequence alterations, a Kompetitive Allele Specific PCR marker, a sequencing marker, and an Insertion/Deletion marker were developed. Phenotypic analysis of the TPI gene-edited mutants and allelism tests indicated that the gene TPI is responsible for ms-30 and its alleles. Transcriptome analysis of ms-30 and quantitative RT-PCR revealed some differentially expressed genes associated with stamen and carpel development. These findings will aid in the marker-assisted selection for ms-30 and its alleles in tomato breeding and support the functional analysis of the TPI gene.