Mark D. Peaple, Tripti Bhattacharya, Jessica E. Tierney, Jeffrey R. Knott, Tim K. Lowenstein, Sarah J. Feakins

Biomarker Evidence for an MIS M2 Glacial‐Pluvial in the Mojave Desert Before Warming and Drying in the Late Pliocene

  • Paleontology
  • Atmospheric Science
  • Oceanography

AbstractAncient lake deposits in the Mojave Desert indicate that the water cycle in this currently dry place was radically different under past climates. Here we revisit a 700 m core drilled 55 years ago from Searles Valley, California, that recovered evidence for a lacustrine phase during the late Pliocene. We update the paleomagnetic age model and extract new biomarker evidence for climatic conditions from lacustrine deposits (3.373–2.706 Ma). The MBT′5Me temperature proxy detects present‐day conditions (21 ± 3°C, n = 2) initially, followed by warmer‐than‐present conditions (25 ± 3°C, n = 17) starting at 3.268 and ending at 2.734 Ma. Bacterial and archeal biomarkers reveal lake salinity increased after 3.268 Ma likely reflecting increased evaporation in response to higher temperatures. The δ13C values of plant waxes (−30.7 ± 1.4‰, n = 28) are consistent with local C3 taxa, likely expanded conifer woodlands during the pluvial with less C4 than the Pleistocene. δD values (−174 ± 5‰, n = 25) of plant waxes indicate precipitation δD values (−89 ± 5‰, n = 25) in the late Pliocene are within the same range as the late Pleistocene precipitation δD. Microbial biomarkers identify a deep, freshwater lake and a cooling that corresponds to the onset of major Northern Hemisphere glaciation at marine isotope stage marine isotope stages M2 (3.3 Ma). A more saline lake persisted for ∼0.6 Ma across the subsequent warmth of the late Pliocene (3.268–2.734 Ma) before the lake desiccated at the Pleistocene intensification of Northern Hemisphere Glaciation.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive