Zhong-Xiang Xie, Xue-Kun Chen, Xia Yu, Yuan-Xiang Deng, Yong Zhang, Wu-Xing Zhou, Pin-Zhen Jia

Atomistic simulation of thermoelectric properties in cove-edged graphene nanoribbons

  • General Physics and Astronomy

We present an atomistic simulation of thermoelectric properties in cove-edged graphene nanoribbons (CGNRs) via the nonequilibrium Green's function. Different from gapless zigzag graphene nanoribbons (ZGNRs), CGNRs exhibit a noticeable bandgap. Such a bandgap can be modulated by varying three structural parameters (namely, the width N, the distance between adjacent coves m, as well as the shortest offset n) of CGNRs, which can give rise to the transition from semiconducting to semi-metallic. Due to the less dispersive phonon bands and the decrease in the number of phonon channels of CGNRs, they are found to have the lower phonon thermal conductance than ZGNRs. Modulation of CGNRs can produce over tenfold improvement of the maximum of ZT compared to ZGNRs. This improvement is due to the promotion of the Seebeck coefficient together with the degradation of the phonon thermal conductance of CGNRs compared to ZGNRs.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive