Ayumi Tsukada, Ken Takata, Jun Aikawa, Dai Iwase, Manabu Mukai, Yui Uekusa, Yukie Metoki, Gen Inoue, Masayuki Miyagi, Masashi Takaso, Kentaro Uchida

Association between High HbA1c Levels and Mast Cell Phenotype in the Infrapatellar Fat Pad of Patients with Knee Osteoarthritis

  • Inorganic Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Computer Science Applications
  • Spectroscopy
  • Molecular Biology
  • General Medicine
  • Catalysis

Diabetes mellitus (DM) has been suggested as a potential risk factor for knee osteoarthritis (KOA), and its underlying mechanisms remain unclear. The infrapatellar fat pad (IPFP) contributes to OA through inflammatory mediator secretion. Mast cells’ (MCs) role in diabetic IPFP pathology is unclear. In 156 KOA patients, hemoglobin A1c (HbA1c) was stratified (HbA1c ≥ 6.5, n = 28; HbA1c < 6.5, n = 128). MC markers (TPSB2, CPA3) in IPFP were studied. Propensity-matched cohorts (n = 27 each) addressed demographic differences. MC-rich fraction (MC-RF) and MC-poor fraction (MC-PF) were isolated, comparing MC markers and genes elevated in diabetic skin-derived MC (PAXIP1, ARG1, HAS1, IL3RA). TPSB2 and CPA3 expression were significantly higher in HbA1c ≥ 6.5 vs. <6.5, both before and after matching. MC-RF showed higher TPSB2 and CPA3 expression than MC-PF in both groups. In the HbA1c ≥ 6.5 group, PAXIP1 and ARG1 expression were significantly higher in the MC-RF than MC-PF. However, no statistical difference in the evaluated genes was detected between the High and Normal groups in the MC-RF. Elevated TPSB2 and CPA3 levels in the IPFP of high HbA1c patients likely reflect higher numbers of MCs in the IPFP, though no difference was found in MC-specific markers on a cell-to-cell basis, as shown in the MC-RF comparison. These findings deepen our understanding of the intricate interplay between diabetes and KOA, guiding targeted therapeutic interventions.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive