Ana Carla Chierighini Salamunes, Nancy I Williams, Mary Jane De Souza

Are Menstrual Disturbances Associated with an Energy Availability Threshold? A Critical Review of the Evidence

  • Physiology (medical)
  • Nutrition and Dietetics
  • Physiology
  • General Medicine
  • Endocrinology, Diabetes and Metabolism

Exercising women have a high prevalence of menstrual disturbances. In 2003, it was suggested that disruption in luteinizing hormone (LH) pulsatility occurs below a threshold of energy availability (EA) of 30 kcal/kg LBM/d. This paper is a critical review of the evidence regarding the theory that disruptions to the reproductive axis and menstrual disturbances occur below the proposed threshold. Short-term laboratory studies demonstrated that 4-5 days of an EA below 30 kcal/kg LBM/d, induced with or without exercise, decreased serum triiodothyronine and LH pulse frequency, and increased LH pulse amplitude in sedentary, regularly menstruating women. Fewer studies have investigated downstream ovarian effects after long-term exposure to low EA. The Sargent Camp Study was the first randomized trial that induced luteal phase defects, delayed menses, and anovulation by causing weight loss (-4±0.3 kg) with an abrupt increase in exercise volume for two menstrual cycles. The BioEnergetics study was a randomized controlled trial that induced varying levels of energy deficits by manipulating energy intake and expenditure for three menstrual cycles. LH pulse frequency and triiodothyronine decreased, and 57% of women developed luteal phase defects, anovulation, and/or oligomenorrhea. An EA below 30 kcal/kg FFM/d increased the chance of experiencing a menstrual disturbance by 50%. However, menstrual disturbances were observed above and below that EA threshold, and changes in LH pulse frequency predicted only luteal phase defects, not oligomenorrhea or anovulation. The proposed EA threshold is not a cut-off below which menstrual disturbances occur, but represents an increased risk of experiencing menstrual disturbances.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive