Natassia Silva de Araújo, Aline dos Santos Moreira, Rayane da Silva Abreu, Valdemir Vargas Junior, Deborah Antunes, Julia Badaró Mendonça, Tayanne Felippe Sassaro, Arnon Dias Jurberg, Rafaella Ferreira-Reis, Nina Carrossini Bastos, Priscila Valverde Fernandes, Ana Carolina Ramos Guimarães, Wim Maurits Sylvain Degrave, Tatiana Martins Tilli, Mariana Caldas Waghabi

Aptamer-Based Recognition of Breast Tumor Cells: A New Era for Breast Cancer Diagnosis

  • Inorganic Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Computer Science Applications
  • Spectroscopy
  • Molecular Biology
  • General Medicine
  • Catalysis

Breast cancer is one of the leading causes of death among women worldwide and can be classified into four major distinct molecular subtypes based on the expression of specific receptors. Despite significant advances, the lack of biomarkers for detailed diagnosis and prognosis remains a major challenge in the field of oncology. This study aimed to identify short single-stranded oligonucleotides known as aptamers to improve breast cancer diagnosis. The Cell-SELEX technique was used to select aptamers specific to the MDA-MB-231 tumor cell line. After selection, five aptamers demonstrated specific recognition for tumor breast cell lines and no binding to non-tumor breast cells. Validation of aptamer specificity revealed recognition of primary and metastatic tumors of all subtypes. In particular, AptaB4 and AptaB5 showed greater recognition of primary tumors and metastatic tissue, respectively. Finally, a computational biology approach was used to identify potential aptamer targets, which indicated that CSKP could interact with AptaB4. These results suggest that aptamers are promising in breast cancer diagnosis and treatment due to their specificity and selectivity.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive