Anticariogenic Activity of Celastrol and Its Enhancement of Streptococcal Antagonism in Multispecies Biofilm
Hao Li, Chenguang Niu, Junyuan Luo, Zhengwei Huang, Wei Zhou- Pharmacology (medical)
- Infectious Diseases
- Microbiology (medical)
- General Pharmacology, Toxicology and Pharmaceutics
- Biochemistry
- Microbiology
Dental caries is a chronic disease resulting from dysbiosis in the oral microbiome. Antagonism of commensal Streptococcus sanguinis and Streptococcus gordonii against cariogenic Streptococcus mutans is pivotal to keep the microecological balance. However, concerns are growing on antimicrobial agents in anticaries therapy, for broad spectrum antimicrobials may have a profound impact on the oral microbial community, especially on commensals. Here, we report celastrol, extracted from Traditional Chinese Medicine’s Tripterygium wilfordii (TW) plant, as a promising anticaries candidate. Our results revealed that celastrol showed antibacterial and antibiofilm activity against cariogenic bacteria S. mutans while exhibiting low cytotoxicity. By using a multispecies biofilm formed by S. mutans UA159, S. sanguinis SK36, and S. gordonii DL1, we observed that even at relatively low concentrations, celastrol reduced S. mutans proportion and thereby inhibited lactic acid production as well as water-insoluble glucan formation. We found that celastrol thwarted S. mutans outgrowth through the activation of pyruvate oxidase (SpxB) and H2O2-dependent antagonism between commensal oral streptococci and S. mutans. Our data reveal new anticaries properties of celastrol that enhance oral streptococcal antagonism, which thwarts S. mutans outgrowth, indicating its potential to maintain oral microbial balance for prospective anticaries therapy.