Felix-Nikolai Oschinka Jegor Habermann, Daniela Schmitt, Thomas Failing, David Alexander Ziegler, Jann Fischer, Laura Anna Fischer, Manuel Guhlich, Stephanie Bendrich, Olga Knaus, Tobias Raphael Overbeck, Hannes Treiber, Alexander von Hammerstein-Equord, Raphael Koch, Rami El Shafie, Stefan Rieken, Martin Leu, Leif Hendrik Dröge

And Yet It Moves: Clinical Outcomes and Motion Management in Stereotactic Body Radiation Therapy (SBRT) of Centrally Located Non-Small Cell Lung Cancer (NSCLC): Shedding Light on the Internal Organ at Risk Volume (IRV) Concept

  • Cancer Research
  • Oncology

The internal organ at risk volume (IRV) concept might improve toxicity profiles in stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC). We studied (1) clinical aspects in central vs. peripheral tumors, (2) the IRV concept in central tumors, (3) organ motion, and (4) associated normal tissue complication probabilities (NTCPs). We analyzed patients who received SBRT for NSCLC (clinical aspects, n = 78; motion management, n = 35). We found lower biologically effective doses, larger planning target volume sizes, higher lung doses, and worse locoregional control for central vs. peripheral tumors. Organ motion was greater in males and tall patients (bronchial tree), whereas volume changes were lower in patients with a high body mass index (BMI) (esophagus). Applying the IRV concept (retrospectively, without new optimization), we found an absolute increase of >10% in NTCPs for the bronchial tree in three patients. This study emphasizes the need to optimize methods to balance dose escalation with toxicities in central tumors. There is evidence that organ motion/volume changes could be more pronounced in males and tall patients, and less pronounced in patients with higher BMI. Since recent studies have made efforts to further subclassify central tumors to refine treatment, the IRV concept should be considered for optimal risk assessment.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive